If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x=9=0
We move all terms to the left:
x^2+9x-(9)=0
a = 1; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·1·(-9)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{13}}{2*1}=\frac{-9-3\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{13}}{2*1}=\frac{-9+3\sqrt{13}}{2} $
| 13u-10u-2u-u+2u=10 | | 3x+3(3x+13)=183 | | 2x-(7)=0 | | 2x-1/6=2/3 | | 37-18+w=67 | | x^2+-9x=9=0 | | 3/16x-25=x | | 48=5u+3u | | 4h—6=22 | | 60÷5{7-4}=a | | 5t+9/2=12 | | 3t^2+8t-10=0 | | 3=2x+10=10 | | x^2+0x=9=0 | | 3(2x+1)-2(x+3)=4 | | (4a+3)+2(2+a)=6a+7 | | 17g-12g+4g=9 | | x^2+3x=9=0 | | -6x-45=9x-9(x-3) | | -8t-3t+2=-5t-t | | 5m-(5+4m)=(3-m)+8 | | x^2+2x=9=0 | | 15+25m=20+0.5m | | 4(x+3)=32-6x | | 6*(x+4)=x-11 | | -0.49x+0.19x=9.3 | | 29=50+3y | | 5.2=a=-0.4 | | 5+3(q-4)=2((q+1 | | x^2+-1x=9=0 | | 4m+M2=4.35 | | 2(3x+5)-5x=13 |